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RESUMO 

RIBEIRO, T. S. Aprimoramento do controle operacional em estação de tratamento de 

efluentes: Avaliação comparativa de algoritmos de aprendizado de máquina. 2023. 47 f. 

Trabalho de conclusão de curso (MBA em Inteligência Artificial e Big Data) – Instituto de 

Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2023. 

 

A eletrocoagulação é um método emergente de tratamento de efluentes que combina os 

benefícios da coagulação, flotação e eletroquímica. Devido à complexidade inerente dos 

processos associados às estações de tratamento de efluentes, é difícil responder rapidamente e 

corretamente às circunstâncias dinâmicas necessárias para garantir a qualidade do efluente. 

Portanto, este trabalho tem como objetivo identificar a condição operacional de uma estação de 

tratamento de efluentes que adotou a eletrocoagulação como método de tratamento. Duas 

condições operacionais, baseadas na clarificação do efluente e no lodo de reação, foram a 

variável-alvo. Foram monitoradas onze variáveis, como condutividade, pH, voltagem, corrente, 

polaridade e potencial de oxidação-redução. Diversos algoritmos de aprendizado de máquina 

foram testados utilizando a biblioteca PyCaret 3.2.0 no Google Colaboratory para analisar seu 

desempenho. Os modelos que obtiveram os maiores valores de F1-score no treinamento foram 

regressão logística, floresta aleatória, XGBoost e SVM com kernel radial, todos com 

pontuações médias acima de 0,93. Destes, o XGBoost se destacou ao mostrar uma baixa taxa 

de erro do tipo I e um nível aceitável de erros do tipo II, evidenciando sua capacidade de 

minimizar falsos positivos. O modelo de floresta aleatória demonstrou a maior precisão, 

seguido de perto pelo XGBoost. Este último apresentou o segundo melhor desempenho em 

recall, sendo superado apenas pela regressão logística. Além disso, o XGBoost exibiu o mais 

alto valor de acurácia. Assim, o estudo conclui que o XGBoost e a floresta aleatória se 

destacaram como modelos promissores para prever a eficácia operacional, com o XGBoost 

mostrando um ótimo equilíbrio. 

 

Palavras-chave: Aprendizado de Máquina; Detecção de Falha; Estação de Tratamento de 

Efluente; PyCaret; Regressão Logística; Floresta Aleatória; XGBoost; SVM 

 

 

 

  



 

 

ABSTRACT 

RIBEIRO, T. S. Enhancement of operational control in wastewater treatment plant: 

Comparative evaluation of machine learning algorithms. 2023. 47 f. Course completion 

work (MBA in Artificial Intelligence and Big Data) - Institute of Mathematical and Computer 

Sciences, University of São Paulo, São Carlos, 2023. 

 

Electrocoagulation is an emerging method for treating wastewater, combining the advantages 

of coagulation, flotation, and electrochemistry. Due to the inherent complexity of processes 

associated with wastewater treatment plants, promptly and accurately responding to the 

dynamic circumstances necessary to ensure effluent quality is challenging. Therefore, this study 

aims to identify the operational condition of a wastewater treatment plant that has adopted 

electrocoagulation as a treatment method. Two operational conditions, based on effluent 

clarification and reaction sludge, were the target variable. Eleven variables were monitored, 

including conductivity, pH, voltage, current, polarity, and oxidation-reduction potential. 

Various machine learning algorithms were tested using the PyCaret 3.2.0 library in Google 

Colaboratory to assess their performance. The models achieving the highest F1-score values 

during training were logistic regression, random forest, XGBoost, and radial kernel SVM, all 

with mean scores above 0.93. Among these, XGBoost stood out by displaying a low rate of 

Type I errors and an acceptable level of Type II errors. The random forest model exhibited the 

highest precision, closely followed by XGBoost, which showed the second-best recall 

performance, surpassed only by logistic regression. Additionally, XGBoost displayed the 

highest accuracy value. Consequently, the study concludes that XGBoost and random forest 

emerged as promising models for predicting the operational efficiency of the wastewater 

treatment plant, with XGBoost demonstrating a remarkable balance and achieving good overall 

precision. 

 

Keywords: Machine Learning; Fault Detection; Wastewater Treatment Plant; PyCaret; 

Logistic Regression; Random Forest; XGBoost; SVM 
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1. INTRODUÇÃO 

 

 Não apenas nossa existência depende da água, mas também nosso bem-estar econômico. 

A água desempenha um papel em todos os nossos processos de produção. Não há substitutos, 

e embora seja renovável, seu suprimento é limitado. Hoje, todos estão preocupados com a 

possibilidade de escassez de água diante das crescentes necessidades, em grande parte 

impulsionadas pela população, bem como as repercussões que isso pode ter em nossa produção 

de energia e alimentos (Diaz-Elsayed et al., 2019). 

Múltiplos fatores contribuem para a poluição da água, incluindo resíduos industriais, 

operações de mineração, esgoto, fertilizantes químicos, uso de energia, entre outros 

(Mousazadeh et al., 2021). Esforços constantes devem ser empreendidos para proteger os 

suprimentos de água nesta situação. 

Em geral, os desafios enfrentados durante o tratamento de águas residuais são bastante 

complicados, uma vez que o efluente compreende vários tipos de contaminantes com base em 

sua fonte. Consequentemente, existem vários tipos de efluentes a serem tratados, cada um com 

suas próprias propriedades que necessitam de técnicas de tratamento exclusivas (Crittenden et 

al., 2012). 

Dentre as técnicas de tratamento existentes, a eletrocoagulação (EC) é uma abordagem 

potencial para o tratamento efluentes devido aos seus custos operacionais mais baixos, design 

simples, sedimentação rápida, pouca ou nenhuma adição de produtos químicos e baixa 

produção de lodo (Das; Sharma; Purkait, 2022). Hoje, o principal objetivo de engenheiros 

químicos e ambientais é projetar uma estação de tratamento de efluente (ETE) que possa 

permitir o tratamento descentralizado (Alabi; Telukdarie; Van Rensburg, 2019). Nesse sentido, 

a EC é uma técnica descentralizada eficaz. 

 Nos últimos anos, as estações de tratamento de efluentes (ETEs) têm sido expostas a 

uma quantidade sem precedentes de dados, resultantes da queda nos custos dos sensores, da 

crescente prevalência da conectividade sem fio e da proliferação de dispositivos móveis capazes 

de coletar continuamente dados e realizar cálculos complexos (Kijak, 2021). 

A crescente automação das ETEs permite o acesso a dados em massa e o 

desenvolvimento de soluções orientadas por dados (Newhart et al., 2019). A maioria dos 

sistemas de detecção de falhas é baseada em dados, pois podem identificar rapidamente 

circunstâncias anormais, são mais simples de implementar e exigem menos conhecimento 

prévio (Md Nor; Che Hassan; Hussain, 2020). 
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Os recentes avanços no monitoramento de processos e desempenho baseados em dados 

podem oferecer à essa indústria uma oportunidade de reduzir custos e melhorar as operações. 

Devido à não linearidade e à crescente complexidade do processo, as técnicas de detecção de 

falhas baseadas em dados estão em alta demanda (Dairi et al., 2019). 

Este estudo tem como objetivo identificar a condição operacional de uma ETE que 

adotou a EC como método de tratamento. Duas condições operacionais baseadas na clarificação 

do efluente e no lodo de reação foram consideradas como variável-alvo. Onze features, 

incluindo condutividade, pH, voltagem, corrente, polaridade e potencial de oxidação-redução 

(ORP), foram monitoradas. Diferentes algoritmos foram empregados e o desempenho dos 

modelos foi comparado. 

A Figura 1 representa a visualização em rede que apareceu nas publicações obtidas pelo 

banco de dados Scopus usando as palavras-chave EC e modelagem, e que foram publicadas 

entre 2004 e 2022. O mapa de nuvem exibe a frequência das palavras-chave nos artigos, bem 

como suas relações. Cada cor reflete um conjunto de termos que foram agrupados em clusters. 

Como pode ser observado, os métodos estatísticos tradicionais desempenham um papel 

significativo na modelagem de EC. Métodos que empregam algoritmos de aprendizado de 

máquina ainda são escassos na literatura avaliada; portanto, existe uma lacuna de conhecimento. 
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Figura 1 – Visualização em rede da pesquisa de modelagem de EC (gerada usando o software 

VOSviewer) (Fonte: Autoral, 2023). 

 

Assim, a principal contribuição apresentada neste trabalho é abordar uma lacuna de 

conhecimento na detecção de falhas orientada por dados em ETEs baseadas em EC. 

 

2. REVISÃO BIBLIOGRÁFICA 

 

2.1. Aprendizagem de máquina em ETEs 

 

Inteligência artificial e aprendizado de máquina são tecnologias/métodos utilizados no 

setor de águas para proporcionar vantagens nos processos de tratamento de água, identificando 

antecipadamente problemas e notificando em tempo real o engenheiro responsável. A Internet 

das Coisas é uma tecnologia potencial para a indústria da água, pois permite o monitoramento 

remoto em tempo real (Yasin et al., 2021). Espera-se que a tecnologia de big data e análise 

transforme essa indústria em um setor totalmente orientado por dados (Alabi; Telukdarie; Van 

Rensburg, 2019). 

A inteligência artificial emergente e o aprendizado de máquina, em conjunto com 

tecnologias inteligentes, estão preenchendo uma lacuna em aplicações que anteriormente era 

negligenciada pelos métodos convencionais e formas de pensar (Lowe; Qin; Mao, 2022). 

Antecipa-se que a inteligência artificial, aprendizado de máquina e tecnologias inteligentes 

possam modelar e resolver desafios complexos nos processos de tratamento de água, devido à 

sua generalização, robustez e relativa simplicidade de projeto, visando a redução de custos e a 

melhoria das operações. Aplicações que têm feito uso significativo de aprendizado de máquina 

incluem tratamento de água e efluentes, monitoramento de sistemas naturais e agricultura de 

precisão (Zhao et al., 2020). 

A detecção de falhas é um uso proeminente de algoritmos de aprendizado de máquina 

em ETEs. A seção a seguir destacará alguns dos conceitos mais relevantes desse campo. 

 

2.2. Detecção de falhas em ETEs 

 

Uma falha é a divergência indesejada de pelo menos uma característica distintiva de um 

sistema de seu estado normal, aceitável ou padrão. Há um crescente interesse em criar soluções 

para lidar com falhas que ocorrem em processos industriais, garantindo assim saídas seguras e 
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eficientes (Li et al., 2020). A detecção de falhas é a técnica essencial para resolver esse 

problema. 

A detecção de falhas pode ser realizada por métodos de primeiros princípios, baseados 

em dados ou baseados em conhecimento. Métodos de primeiros princípios exigem o 

desenvolvimento de um modelo matemático com base em entendimento teórico. Este método 

é frequentemente ineficaz devido à complexidade do modelo matemático gerado. O método 

baseado em conhecimento, por outro lado, requer compreensão prévia ou conhecimento das 

conexões entre falhas e parâmetros ou estados do modelo. Também é difícil aplicar este método 

a sistemas em grande escala devido ao tempo e expertise necessários para criar esses modelos 

complexos de falhas (Venkatasubramanian et al., 2003). 

Devido à não linearidade e à crescente complexidade da indústria de processos 

contemporânea, técnicas orientadas por dados estão em demanda. As tecnologias de banco de 

dados e mineração de dados fornecem suporte tecnológico confiável para o desenvolvimento 

de técnicas de modelagem orientadas por dados em processos industriais (Md Nor; Che Hassan; 

Hussain, 2020). 

Abordagens analíticas orientadas por dados dependem substancialmente do tipo de 

dados obtidos. É essencial compreender a estrutura e a qualidade dos dados para decidir sobre 

a organização e uso dos mesmos. Uma instalação de ETE coleta dados de várias fontes, 

incluindo análises laboratoriais, leituras de sensores online, gerenciamento de operações e 

manutenção, dados de clientes e fabricantes de tecnologia (Newhart et al., 2019). 

Historicamente, as ETEs careciam de gestão de processos orientada por dados, com as 

decisões operacionais diárias sendo consideradas mais uma arte do que uma ciência. Apesar 

dos desafios específicos apresentados, a automação de sistemas orientada por dados e o controle 

em tempo real são essenciais para o funcionamento de uma ETE contemporânea. Para diminuir 

o impacto de uma falha na qualidade da água do efluente, os operadores da planta devem estar 

prontos para reagir rapidamente a uma falha no sistema a fim de evitar danos aos equipamentos 

ou falhas no sistema (Mamandipoor et al., 2020). 

 

2.3. Algoritmos de aprendizado de máquina 

 

A aprendizagem de máquina é um subcampo da abordagem de inteligência artificial que 

permite que sistemas adquiram conhecimento automaticamente, sem programação explícita. 

Esse processo começa com a análise dos dados e a busca por padrões para tomar decisões 

melhores (Alom et al., 2019). 
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Com o uso de rótulos, algoritmos supervisionados de aprendizado de máquina utilizam 

as informações adquiridas de dados passados e atuais para prever ocorrências futuras. Essa 

estratégia inicia-se com o treinamento de um conjunto de dados, após o qual o algoritmo 

desenvolve uma função inferida para prever os valores de saída. Com um procedimento de 

treinamento suficiente, o sistema é capaz de fornecer resultados com base nos dados de entrada. 

O método para aprendizado de máquina compara os resultados gerados com os resultados reais 

e previstos para encontrar erros e ajustar o modelo conforme necessário (Sarker, 2021). 

Uma versão clássica da tarefa de aprendizado de máquina supervisionado é o problema 

de classificação, no qual o modelo deve estimar o comportamento de uma função que mapeia 

um vetor em uma das classes ao observar várias amostras de entrada-saída da função (Nasteski, 

2017). Na próxima seção, serão revisados alguns dos algoritmos de aprendizado de máquina 

supervisionado. 

 

2.3.1. Máquina de Vetores de Suporte (SVM) 

 

 A noção do SVM foi herdada da rede neural artificial, ou pode-se argumentar que o 

SVM é a extensão matemática da mesma. O SVM realiza classificação ao traduzir os dados 

iniciais de treinamento para um espaço multidimensional e gerar um hiperplano com dimensões 

maiores. O SVM é uma estratégia eficaz de aprendizado matemático baseada em hiperplanos. 

O algoritmo busca por pontos vetoriais, conhecidos como vetores de suporte, que definem o 

limite de decisão e proporcionam uma separação marginal significativa entre as classes (Figura 

2). No plano de decisão, o SVM distingue classes com a maior distância marginal (Wang, 

2005). 
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Figura 2 – Modelo Linear SVM (Fonte: Autoral, 2023). 

 

A separação (margem) entre as fronteiras de decisão é maximizada em um espaço 

altamente dimensional. Ao determinar funções de decisão diretamente a partir dos dados de 

treinamento, esta abordagem de classificação reduz as imprecisões de classificação dos dados 

de treinamento e melhora a capacidade de generalização (Chauhan; Dahiya; Sharma, 2019). 

A seguir está a equação geral para o hiperplano adicional (Equação 1): 

 

𝑦𝑖(𝑤 ⋅ 𝑥𝑖 − 𝑏) ≥ 1, ∀ 1 ≤ 𝑖 ≤ 𝑛         (1) 

onde 𝑤 representa o vetor normal, 𝑏 representa o viés, ⋅ representa o produto escalar, e 𝑥𝑖 

representa o vetor dimensional que deve ser categorizado em 𝑦𝑖. 

No modelo SVM linear, dois tipos de parâmetros devem ser otimizados: o fator de 

penalidade C (C > 0) e os parâmetros da função do kernel, que podem ser lineares, polinomiais 

ou funções de base radial. C é um parâmetro fixo e ajustável que determina a severidade da 

penalização em caso de amostras incorretas (Yang; Li; Yang, 2015). 

O SVM está ganhando popularidade porque tem uma base matemática sólida e parece 

ter um bom desempenho em várias aplicações do mundo real (Chauhan; Dahiya; Sharma, 

2019). 
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2.3.2. Extreme Gradient Boosting (XGBoost) 

 

 O XGBoost é uma ferramenta poderosa no campo do aprendizado supervisionado, 

permitindo, em muitas situações, um ótimo desempenho de classificação. Em sua base, o 

XGBoost é um algoritmo de boosting de árvore de decisão. O boosting é uma estratégia de 

aprendizado em conjunto que envolve o desenvolvimento de muitos modelos em uma ordem 

sequencial, sendo que cada novo modelo visa corrigir erros do modelo anterior. Cada modelo 

adicional adicionado ao conjunto é uma árvore de decisão (Figura 3). Uma técnica de gradiente 

descendente é utilizada para minimizar a perda neste tipo de procedimento de boosting 

(Ferreira; Figueiredo, 2012). 

 

 

Figura 3 – Disposição da arquitetura do XGBoost (Fonte: Autoral, 2023). 

 

O algoritmo soma todos os resultados das K árvores para obter o valor previsto final, 𝑦𝑖̂, 

representado como (Equação 2–3): 

 

𝑦𝑖̂ = ∑ 𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1 ,   𝑓𝑘 ∈ 𝐹                         (2) 

𝐹 = {𝑓(𝑥) = 𝑤𝑞(𝑥)},   (𝑞: 𝑅𝑚 → 𝑇, 𝑤 ∈ 𝑅𝑇)           (3) 

onde F representa o conjunto de árvores de decisão, m representa o número de features, f(x) 

representa uma das árvores e 𝑤𝑞(𝑥) representa o peso do nó. O número de nós é representado 

por T, e a estrutura de cada árvore é representada por q, que mapeia a amostra para o nó 

correspondente. 

O valor previsto do XGBoost é a soma dos valores dos nós de cada árvore. O objetivo 

do modelo é aprender essas k árvores de forma que a função objetivo possa ser minimizada. A 

penalização da árvore de decisão é ajustada usando a regularização Ω, que pode prevenir o 

sobreajuste, e γ é um hiperparâmetro que determina a complexidade do modelo. 
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A escalabilidade do XGBoost é resultado de inúmeras melhorias significativas nos 

sistemas e algoritmos. Entre esses avanços, há uma técnica de aprendizado de árvore exclusiva 

para lidar com dados esparsos e um processo para lidar com pesos no aprendizado. A 

computação paralela e distribuída acelera o aprendizado (Chen; Guestrin, 2016). 

 

2.3.3. Floresta Aleatória 

 

A floresta aleatória é um método de aprendizado de máquina desenvolvido por Breiman 

(2001) que combina a abordagem de amostragem por bagging com a seleção aleatória de 

features. Esse método constrói uma coleção de árvores de decisão controlando a variação entre 

elas. 

No processo de construção das árvores individuais na floresta aleatória, a aleatorização 

é aplicada ao escolher o melhor nó para dividir. Tipicamente, isso é determinado como √F, onde 

F é o número de features no conjunto de dados (Probst; Wright; Boulesteix, 2019). 

O índice utilizado é uma função que mede a impureza dos dados, refletindo a incerteza 

em relação à ocorrência de um evento, como a determinação do rótulo de classe. No contexto 

da classificação, esse índice é representado pela equação: 

 

Gini(t) = 1 − ∑ P(Ci|t)2N
i=1                                          (4) 

onde 𝑡 é uma condição, 𝑁 é o número de classes no conjunto de dados e 𝐶𝑖 é o i-ésimo rótulo 

de classe. 

Breiman (2001) demonstrou que a taxa de erro da floresta aleatória está relacionada à 

correlação e à força entre as árvores. Aumentar a correlação entre as árvores aumenta a taxa de 

erro da floresta, enquanto árvores com baixa taxa de erro representam classificadores fortes. 

Reduzir a correlação e aumentar a força individual das árvores contribui para diminuir o erro 

na classificação. 

A construção de uma floresta aleatória envolve o uso de um grande número de árvores 

de decisão não podadas, onde suas saídas são combinadas por uma votação majoritária de 

classes. Para criar árvores precisas, são introduzidos processos de randomização no algoritmo 

de indução das árvores (Probst; Wright; Boulesteix, 2019): 

 

1. Amostragem bootstrap das instâncias dos dados de treinamento, permitindo que cada árvore 

seja treinada em diferentes amostras retiradas com reposição do conjunto original; 
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2. Em vez de escolher a melhor divisão entre todos os atributos, o algoritmo seleciona 

aleatoriamente um subconjunto de atributos para determinar a melhor divisão entre eles. O 

tamanho do subconjunto é recomendado ser aproximadamente n = log₂N + 1, onde N é o 

número de atributos. 

 

O classificador da floresta aleatória é um conjunto de árvores de classificação que são 

treinadas em subconjuntos aleatórios de amostras de treinamento (in-bag samples). Uma porção 

das amostras restantes (out-of-bag samples) é usada para uma técnica de validação cruzada 

interna, estimando o desempenho do modelo da floresta aleatória por meio do erro out-of-bag 

(Biau; Scornet, 2016). 

Cada árvore de decisão é desenvolvida sem poda, e a decisão final da classificação é 

obtida pela média das probabilidades de atribuição de classe calculadas por todas as árvores 

geradas. Dessa forma, uma nova entrada de dados não rotulada é avaliada por todas as árvores 

no conjunto, votando em uma classe, e a classe com mais votos é selecionada como resultado 

final. 

Embora dois parâmetros precisem ser ajustados para construir as árvores da floresta 

aleatória - o número de árvores de decisão a serem geradas (Ntree) e o número de variáveis para 

a melhor divisão (Mtry) - a sensibilidade da precisão da classificação ao Ntree é menor do que 

ao parâmetro Mtry. Assim, Ntree pode ser configurado para um valor elevado, e comumente, é 

definido como 500 em muitos estudos, devido à estabilização dos erros antes desse número de 

árvores ser alcançado (Biau; Scornet, 2016). 

 

2.3.4. Regressão Logística 

 

A análise de regressão logística tornou-se uma ferramenta estatística cada vez mais 

utilizada, embora suas origens remontem ao século XIX. É amplamente considerada a 

estatística de escolha para situações em que se pretende prever a ocorrência de um resultado 

binário (dicotômico) a partir de uma ou mais variáveis independentes (preditoras). 

A regressão logística não pressupõe uma relação linear entre a variável dependente e as 

variáveis independentes, mas entre o logito do resultado e os valores dos preditores (Healy, 

2006). A variável dependente deve ser categórica; as variáveis independentes não precisam ser 

intervalares, nem distribuídas normalmente, nem relacionadas linearmente, nem de variância 

igual dentro de cada grupo, e por fim, as categorias (grupos) devem ser mutuamente exclusivas 
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e exaustivas. Um caso pode estar apenas em um grupo e cada caso deve ser membro de um dos 

grupos. A regressão logística tem o poder de acomodar tanto variáveis independentes 

categóricas quanto contínuas. A inspeção dessas suposições mostra que essa técnica pode ser 

empregada de forma um pouco mais flexível do que as técnicas de regressão tradicionais, 

tornando-a adequada para muitas situações (Spitznagel, 2007). 

Para qualquer caso dado, a regressão logística calcula a probabilidade de que um caso 

com um conjunto específico de valores para as variáveis independentes seja membro da 

categoria modelada. A regressão logística atribui a cada preditor um coeficiente que mede sua 

contribuição independente para a variação na variável dependente. A variável dependente Y 

assume o valor 1 se a resposta for "Sim" e o valor 0 se a resposta for "Não" (Healy, 2006). 

Na Equação (5), o modelo de regressão logística relaciona diretamente a probabilidade 

de Y com as variáveis preditoras. O objetivo da regressão logística é estimar os k + 1 parâmetros 

desconhecidos β na Equação (5). Isso é feito com a estimativa de máxima verossimilhança, que 

envolve encontrar o conjunto de parâmetros para o qual a probabilidade dos dados observados 

é maior. Os coeficientes de regressão indicam o grau de associação entre cada variável 

independente e o resultado. Cada coeficiente representa a quantidade de mudança que 

esperaríamos na variável de resposta se houvesse uma mudança de uma unidade na variável 

preditora. O objetivo da regressão logística é prever corretamente a categoria do resultado para 

casos individuais usando o melhor modelo (Spitznagel, 2007). Para alcançar esse objetivo, um 

modelo é criado que inclui todas as variáveis preditoras que são úteis na previsão da variável 

de resposta. 

 

𝑃(𝑌) =
𝑒β0+β1𝑋1+⋯+β𝑘𝑋𝑘

1+𝑒β0+β1𝑋1+⋯+β𝑘𝑋𝑘
                                             (5) 

Y é a variável dicotômica do resultado; X₁,X₂,...,Xₖ são as variáveis preditoras, β₀,β₁,β₂,...,βₖ 

são os coeficientes de regressão (modelo) e β₀ é o intercepto. 

A variável dependente binária tem os valores 0 e 1 e o valor previsto (probabilidade) 

deve estar limitado a cair na mesma faixa. Para definir uma relação limitada entre 0 e 1, a 

regressão logística usa a curva logística para representar a relação entre a variável independente 

e dependente. Em níveis muito baixos da variável independente, a probabilidade se aproxima 

de 0, mas nunca atinge 0. Da mesma forma, se a variável independente aumenta, os valores 

previstos aumentam ao longo da curva e se aproximam de 1, mas nunca igualam a 1. 
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3. MATERIAIS E MÉTODOS 

 

Nesta seção, delinearemos os procedimentos adotados para a comparação de algoritmos, 

abrangendo desde a estruturação do conjunto de dados até a obtenção das métricas de avaliação. 

A Figura 4 ilustra os passos executados, os quais serão detalhados a seguir. 

 

 

Figura 4 – A metodologia experimental empregada na comparação dos algoritmos (Fonte: Autoral, 

2023). 

 

O treinamento dos modelos de aprendizado de máquina foi conduzido utilizando a 

versão 3.2.0 da biblioteca PyCaret. Esta ferramenta de código aberto em Python foi escolhida 

devido à sua compatibilidade com o ambiente colaborativo Google Colaboratory. Este estudo 

empregou os algoritmos de classificação disponíveis na biblioteca, os quais abrangem a 

regressão logística, k-vizinhos mais próximos, floresta aleatória, máquinas de vetores de 

suporte (SVM), naive Bayes e XGBoost. Esta diversidade de algoritmos representou uma 

abordagem abrangente e significativa para explorar diferentes técnicas de aprendizado de 

máquina pertinentes ao escopo dessa investigação. 

 

3.1. Descrição do conjunto de dados 

 

Os dados foram obtidos durante a pesquisa realizada para o meu doutoramento (Ribeiro, 

2022) e originam-se de uma ETE descentralizada, a qual empregou o método de 

eletrocoagulação. Essa unidade foi comissionada pela VentilAQUA em uma fábrica de 

panificação na Eslovênia. 
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A tecnologia VABEC® da VentilAQUA consiste em um sistema de fluxo contínuo de 

EC, com célula multi-eletrodo composta por eletrodos feitos de materiais adequados para 

oxidação e coagulação, com uma configuração modular e uma geometria interna projetada para 

máxima eficiência. Após a fase de reação química, é empregado um procedimento de flotação 

para separação sólido-líquido. A unidade de flotação por ar dissolvido (DAF) é um sistema 

compacto pré-montado construído com a tecnologia VAMEF® da VentilAQUA. 

Este sistema contém uma caixa elétrica dedicada com um retificador de energia para 

fornecer corrente elétrica aos eletrodos, ajustar a amperagem para atender aos objetivos de 

tratamento, além de realizar um deslocamento automático e programado de potência como 

procedimento antipassivação. Um painel de controle elétrico equipado com um controlador 

lógico programável gerencia a operação de toda a unidade. 

As variáveis monitoradas para determinar a qualidade e eficiência do processo foram as 

seguintes (Figura 5): condutividade (antes e depois do processo de EC); pH (antes e depois do 

processo de EC, e dentro do sistema DAF); fluxo (nos sistemas de EC e DAF); voltagem; 

corrente; polaridade; e ORP (dentro do sistema DAF). 

 

 

Figura 5 – As posições relativas dos sensores na ETE (Fonte: Autoral, 2023). 

 

A variável-alvo era dois modos operacionais baseados na clarificação do efluente e no 

lodo de reação. Tratamos o problema como uma tarefa de classificação, com duas classes com 

base no conhecimento especializado da seguinte forma: 

 

- Classe 0: Não clarificado, exibindo turbidez; 

- Classe 1: Clarificado, exibindo baixa turbidez. 
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3.2. Análise descritiva estatística 

 

Examinar a dinâmica populacional dos dados representa um aspecto crucial e 

substancial na pesquisa, visto que desempenha um papel fundamental na compreensão do 

sistema em questão. Tal análise possibilita a formulação de conjecturas hipotéticas e a avaliação 

mais rigorosa dos resultados, contribuindo significativamente para a profundidade da análise e 

interpretação dos dados. 

A base de dados não apresenta ausência de valores em nenhuma das variáveis 

analisadas. A Tabela 1 e a Figura 6 fornecem uma visão geral das variáveis e características do 

conjunto de dados, respectivamente. 

 

Tabela 1 – Visão geral do número de variáveis e observações no conjunto de dados. 

Número de variáveis de entrada 11 

Número de variáveis de saída 1 

Número de observações 1207 
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Figura 6 – Densidades das variáveis por estado (Fonte: Autoral, 2023). 

 

A análise da Figura 6 revela a ausência de uma distinção substancial entre as classes em 

relação à maioria das variáveis estudadas. Não obstante, é pertinente ressaltar que as variáveis 

corrente, tensão e pH de saída exibem padrões de comportamento mais distintos entre as duas 

densidades observadas por estado. 

 

 

Figura 7 – Matriz de correlação (Pearson) das variáveis de entrada e de saída (Fonte: Autoral, 2023). 
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A Figura 7 ilustra as correlações existentes entre as variáveis consideradas, inclusive a 

variável de saída, revelando diferentes relações fundamentadas nos fenômenos subjacentes ao 

processo de EC. Notavelmente, a correlação altamente positiva entre corrente e tensão é 

coerente com os preceitos da Lei de Ohm, refletindo aspectos físicos do processo. 

Adicionalmente, ambas as variáveis demonstram uma forte correlação inversa com a variável 

de pH de entrada, o que se justifica pelo fato de que, no processo de eletrocoagulação, fatores 

como tempo de eletrólise, intensidade de corrente e pH inicial do meio guardam relação 

proporcional com a concentração do coagulante e o pH da solução, fundamentados na Lei de 

Faraday. 

Adicionalmente, a Figura 7 evidencia que tanto a tensão quanto a corrente exibem uma 

correlação significativa e positiva com o estado do processo, representado pela variável de 

saída. Tal associação é plausível, dado que essas variáveis exercem influência sobre diversos 

aspectos termodinâmicos e cinéticos inerentes à EC. Este resultado complementa as 

observações obtidas na Figura 6, reforçando as constatações previamente mencionadas. 

 

 

Figura 8 – Distribuição das classes da variável de saída (Fonte: Autoral, 2023). 

 

A análise da Figura 8 indica a presença de desbalanceamento entre as classes. Este 

desequilíbrio é justificável do ponto de vista operacional, considerando que a Classe 1, 
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caracterizada pela ausência de falhas no processo, é esperada ter uma ocorrência superior em 

comparação com a Classe 0, que representa situações onde o processo apresenta falhas. 

Desta forma, um método de oversampling foi aplicado utilizando a técnica de 

oversampling sintético de minoria (SMOTE), visando mitigar desequilíbrios nos dados, 

mantendo resultados aceitáveis e evitando a introdução de ruídos desnecessários. Através da 

síntese de novas instâncias para a classe minoritária, o desequilíbrio entre as classes majoritárias 

e minoritárias é reduzido, tornando as classes mais equiparáveis para previsões futuras. A 

metodologia para gerar novas instâncias sintéticas da classe minoritária baseia-se na 

identificação dos k-vizinhos mais próximos utilizando a métrica de distância euclidiana entre 

os dados (Chawla et al., 2002). 

A principal vantagem do uso da técnica de amostragem SMOTE em comparação com 

outros métodos tradicionais reside na criação de observações sintéticas, em vez de recorrer à 

reutilização de observações já existentes. Isso resulta em um classificador menos suscetível a 

overfitting (Chawla et al., 2002). É relevante notar que o oversampling é aplicado 

exclusivamente nos dados de treinamento, sem utilizar informações dos dados de validação 

para gerar observações sintéticas. Portanto, os resultados obtidos são generalizáveis, tornando 

essa abordagem particularmente precisa e aplicável para a implementação de um modelo em 

um ambiente de produção. 

O PyCaret apresenta um parâmetro denominado "fix_imbalance" no procedimento de 

configuração (setup); quando este parâmetro é estabelecido como True, o método de 

oversampling SMOTE é aplicado durante a fase de preparação dos dados. 

Uma etapa crucial realizada no pré-processamento dos dados é a normalização dos 

dados númericos. Essa técnica desempenha um papel fundamental na padronização dos dados, 

visando garantir que diferentes variáveis possuam uma escala similar, evitando assim que uma 

variável com grande amplitude possua um impacto desproporcional durante o treinamento do 

modelo. Desta forma, o presente trabalho adotou a normalização do tipo minmax. 

É relevante mencionar que o pipeline de transformação foi adequadamente ajustado 

empregando exclusivamente o conjunto de treinamento. Essa abordagem é essencial para evitar 

vazamento de informações do conjunto de teste para o conjunto de treinamento, mantendo a 

integridade e a validade dos resultados. Uma vez ajustadas, as transformações foram aplicadas 

de forma consistente ao conjunto de dados completo, garantindo, por exemplo, uniformidade 

na escala das variáveis ao longo de todo o conjunto de dados analisado. 

Os dados foram particionados em duas partes, sendo alocados 70% para o conjunto de 

treinamento e 30% para o conjunto de teste. Essa divisão foi realizada através de uma 
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amostragem estratificada, garantindo que as proporções das classes presentes na amostra 

original fossem mantidas nos conjuntos de treinamento e teste. 

A Figura 9 fornece evidências que sustentam a similaridade das correlações entre as 

features presentes nos conjuntos de treinamento e teste. A menor diferença média absoluta 

observada indica um grau de alinhamento na interação das features, reforçando a confiança na 

consistência dos dados entre os conjuntos. 

 

 

Figura 9 – Diferença média absoluta nas matrizes de correlação (Pearson) entre conjunto de 

treinamento e teste (Fonte: Autoral, 2023). 

 

3.3. Modelo 
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Através da utilização da função "compare_models" disponível na biblioteca PyCaret, os 

modelos foram treinados empregando os hiperparâmetros padrão da biblioteca scikit-learn. A 

técnica de validação cruzada com 10 folds estratificados foi utilizada. 

No método de validação cruzada k-fold estratificado o conjunto de dados é dividido em 

k subconjuntos (ou folds) de tamanho semelhante, mantendo a proporção entre as classes em 

cada fold, preservando assim a distribuição original das classes. O modelo é treinado k vezes, 

cada vez usando k-1 folds como conjunto de treinamento e o fold restante como conjunto de 

teste. Esse processo é repetido k vezes, de forma que cada fold seja usado exatamente uma vez 

como conjunto de teste. Ao final, são obtidas k métricas de desempenho que são então 

combinadas (por exemplo, calculando a média) para fornecer uma estimativa geral do 

desempenho do modelo. 

O resultado fornecido pela função "compare_models" é uma grade de pontuação que 

demonstra as médias das métricas de precisão, AUC (área sob a curva ROC), recall, precisão, 

F1-score, kappa e MCC (coeficiente de correlação de matthews) ao longo dos 10 folds da 

validação cruzada. Além disso, são fornecidos os tempos de treinamento de cada modelo, 

oferecendo assim uma visão comparativa do desempenho e eficiência temporal dos diferentes 

algoritmos de aprendizado de máquina utilizados. Essa abordagem facilita a identificação dos 

modelos mais promissores para análises subsequentes, permitindo uma seleção mais embasada 

dos melhores modelos para o problema em questão. 

Os modelos foram avaliados utilizando a métrica F1-score, e os quatro modelos que 

obtiveram as pontuações mais altas nessa métrica foram selecionados. Os modelos selecionados 

foram submetidos à função "tune_models", visando a otimização dos hiperparâmetros por meio 

do método de busca em grade aleatória. Essa abordagem depende do número de iterações para 

alcançar uma melhoria no ajuste do modelo. Assim, para aprimoramento dos modelos, foram 

realizadas 50 iterações aleatórias no espaço de busca. A técnica de validação cruzada com 10 

folds estratificados também foi utilizada. 

No contexto da otimização por grade, cada ponto da grade representa uma combinação 

específica de valores para os hiperparâmetros. Para cada combinação, o modelo é treinado e 

avaliado utilizando uma métrica de desempenho específica. 

A métrica escolhida durante esse processo foi o F1-score. O F1-score mensura a eficácia 

de um modelo de classificação por meio do cálculo da média harmônica entre a precisão e o 

recall do classificador (Wardhani et al., 2019). A fórmula do F1-score pode ser interpretada 

como uma média ponderada entre precisão e recall, variando de 0 a 1, onde 0 representa a 
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pontuação mais baixa e 1 representa a mais alta. Precisão e recall contribuem igualmente para 

o F1-score, permitindo encontrar um equilíbrio ideal entre essas duas métricas. 

Por fim, os modelos, cujos hiperparâmetros foram otimizados, foram submetidos a uma 

avaliação no conjunto de teste. Esse estágio permitiu uma validação independente do 

desempenho dos modelos, fornecendo uma avaliação de sua capacidade de generalização para 

novos conjuntos de dados não utilizados durante o treinamento. A análise no conjunto de teste 

é essencial para verificar a robustez e a eficácia dos modelos em situações do mundo real, 

contribuindo para a validação externa e confiabilidade dos resultados obtidos. 

 

4. RESULTADOS E DISCUSSÕES 

 

4.1. Comparação e escolha dos modelos 

 

Os modelos que exibiram os valores mais elevados de F1-score no conjunto de 

treinamento, conforme indicado na Tabela 2, compreenderam a regressão logística, a floresta 

aleatória, o XGBoost e o SVM com kernel radial, com pontuações médias superiores a 0,93 

para a métrica considerada. 

Esses modelos demonstram capacidades que os tornam vantajosos em diferentes 

cenários de aplicação. A regressão logística, conhecida por sua interpretabilidade e 

simplicidade, oferece uma compreensão clara do impacto de cada variável no resultado 

preditivo (Nasteski, 2017). A floresta aleatória, por sua vez, destaca-se pela robustez em lidar 

com dados não lineares e alta dimensionalidade (Fawagreh; Gaber; Elyan, 2014) ao passo que 

o XGBoost é reconhecido pela eficiência em lidar com dados de grandes volumes e pela 

otimização no processo de treinamento, resultando em modelos de alta performance (Natekin; 

Knoll, 2013). Por fim, o SVM com kernel radial evidencia sua eficácia na separação de classes 

em espaços de alta dimensionalidade, sendo especialmente útil quando há presença de dados 

não lineares (Nasteski, 2017). A combinação desses pontos fortes em cada modelo contribuiu 

significativamente para sua performance na tarefa de classificação. 
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Tabela 2 – Ranking dos melhores modelos segundo a métrica F1-score no conjunto de treinamento. 

 

 

As próximas seções apresentarão uma análise dos resultados da otimização dos 

hiperparâmetros para cada modelo. 

 

4.2. Otimização dos hiperparâmetros dos modelos 

 

4.2.1. Floresta aleatória 

 

A análise dos resultados apresentados na Figura 10, representando a métrica F1-score 

para cada fold avaliado no modelo de floresta aleatória, revela uma maior variabilidade entre 

os folds no conjunto de validação, após a otimização dos hiperparâmetros. 

Essa variabilidade sugere a possibilidade de que o espaço de busca dos hiperparâmetros 

adotado durante a otimização poderia não ter sido suficientemente abrangente para capturar de 

forma abrangente a melhor configuração do modelo. A utilização de uma abordagem de 

otimização mais ampla ou a exploração de diferentes técnicas além do random grid, como por 

exemplo, a busca bayesiana, poderia oferecer uma perspectiva mais abrangente do espaço de 

hiperparâmetros, permitindo uma busca mais eficiente das configurações que melhor se 

adequam ao conjunto de dados. Essa ampliação estratégica do espaço de busca dos 

hiperparâmetros ou a exploração de métodos de otimização alternativos pode contribuir 

significativamente para mitigar a variabilidade observada entre os folds de validação, 

potencialmente aprimorando a capacidade de generalização e o desempenho preditivo do 

modelo de floresta aleatória. 

 



35 

 

 

Figura 10 – Desempenho, após otimizar os hiperparâmetros, no conjunto de treinamento e de 

validação do modelo de floresta aleatória (Fonte: Autoral, 2023). 

 

Os hiperparâmetros definidos durante o processo de tuning foram os seguintes: 

- bootstrap=True 

- ccp_alpha=0.0 

- class_weight=None 

- criterion='gini' 

- max_depth=None 

- max_features='sqrt' 

- max_leaf_nodes=None 

- max_samples=None 

- min_impurity_decrease=0.0 

- min_samples_leaf=1 

- min_samples_split=2 

- min_weight_fraction_leaf=0.0 

- n_estimators=100 

- oob_score=False 

- warm_start=False 

 

4.2.2. XGBoost 
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A análise representada na Figura 11 evidencia uma maior dispersão dos valores de F1-

score entre os diferentes folds do conjunto de validação. É importante enfatizar que essa 

dispersão não necessariamente indica uma limitação na capacidade de generalização do modelo 

XGBoost, mas sim pode ser um reflexo da complexidade dos dados. 

Abordagens como a seleção de features ou a aplicação de técnicas de redução da 

dimensionalidade surgem como alternativas viáveis para lidar de maneira eficaz com a 

complexidade dos dados, com potencial para aprimorar a consistência do desempenho do 

modelo XGBoost. Essas estratégias podem permitir uma representação mais concisa e 

informativa para o modelo. Ao reduzir a complexidade dos dados sem perder informações 

cruciais, tais abordagens podem favorecer a capacidade do modelo em capturar padrões. 

 

 

Figura 11 – Desempenho, após otimizar os hiperparâmetros, no conjunto de treinamento e de 

validação do modelo XGBoost (Fonte: Autoral, 2023). 

 

Os hiperparâmetros definidos durante o processo de tuning foram os seguintes: 

- base_score=None 

- booster='gbtree' 

- colsample_bylevel=None 

- colsample_bynode=None 

- colsample_bytree=1.0 

- early_stopping_rounds=None 

- enable_categorical=False 

- eval_metric=None 
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- gamma=None 

- grow_policy=None 

- importance_type=None 

- interaction_constraints=None 

- learning_rate=0.49999999999999994 

- max_bin=None 

- max_cat_threshold=None 

- max_cat_to_onehot=None 

- max_delta_step=None 

- max_depth=11 

- max_leaves=None 

- min_child_weight=4 

- monotone_constraints=None 

- multi_strategy=None 

- n_estimators=272 

- num_parallel_tree=None 

- objective='binary:logistic' 

 

4.2.3. Regressão logística 

 

Os resultados referentes à regressão logística são detalhados na Figura 12. Destaca-se 

uma baixa dispersão nos valores da métrica F1-score ao compararmos o conjunto de treino com 

o conjunto de validação. Esta consistência nos resultados sugere uma boa capacidade de 

generalização do modelo para novos dados. No entanto, é importante notar a presença de alguns 

outliers, indicando valores discrepantes. 

Por ser um modelo relativamente simples, a regressão logística tende a ter um baixo 

risco de overfitting em comparação com modelos mais complexos. Isso significa que o modelo 

é menos propenso a se ajustar excessivamente aos dados de treinamento e, portanto, mantém 

uma boa capacidade de generalização. 
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Figura 12 – Desempenho, após otimizar os hiperparâmetros, no conjunto de treinamento e de 

validação do modelo de regressão logística (Fonte: Autoral, 2023). 

 

Os hiperparâmetros definidos durante o processo de tuning foram os seguintes: 

- C=9.925188555887118 

- class_weight=None 

- dual=False 

- fit_intercept=True 

- intercept_scaling=1 

- l1_ratio=None 

- max_iter=1000 

- multi_class='auto' 

- penalty='l2' 

- solver='lbfgs' 

- tol=0.0001 

- warm_start=False 

 

4.2.4. SVM com kernel radial 

 

A Figura 13 apresenta os resultados para o modelo SVM com kernel radial, onde se 

observa uma expressiva variação na métrica F1-score entre o conjunto de treinamento e o 

conjunto de validação nos folds da validação cruzada. Essa variação pode ser atribuída à 

sensibilidade do SVM com kernel radial aos hiperparâmetros, como o parâmetro de 
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regularização (C) e a largura da função de kernel (gamma). Pequenas variações nesses 

parâmetros podem influenciar drasticamente a performance do modelo (Friedrichs; Igel, 2005), 

levando a uma maior discrepância entre os conjuntos. 

 

 

Figura 13 – Desempenho, após otimizar os hiperparâmetros, no conjunto de treinamento e de 

validação do modelo SVM com kernel radial (Fonte: Autoral, 2023). 

 

Os hiperparâmetros definidos durante o processo de tuning foram os seguintes: 

- C=42.93468848796315 

- break_ties=False 

- class_weight='balanced' 

- coef0=0.0 

- decision_function_shape='ovr' 

- degree=3 

- gamma='auto' 

- kernel='rbf' 

- max_iter=-1 

- probability=True 

- shrinking=True 

- tol=0.001 

 

A próxima seção compreenderá uma análise comparativa dos desempenhos de cada 

modelo no conjunto de teste. 
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4.3. Comparação de desempenho dos modelos no conjunto de teste 

 

Antes de adentrar na análise comparativa, é crucial salientar um elemento fundamental 

no contexto do presente estudo. No âmbito dos classificadores, é possível identificar dois tipos 

de erros, nomeadamente, o erro tipo I e o erro tipo II. O erro tipo I ocorre quando se verifica 

um falso positivo, enquanto o erro tipo II se manifesta por um falso negativo. O falso positivo, 

em específico, representa um ponto crítico nesta análise. Ele incorretamente indica um 

desempenho adequado do sistema, quando na verdade há falhas presentes. Esta condição 

equivocada pode acarretar prejuízos multifacetados na operação, ressaltando a relevância de 

sua identificação e mitigação para aprimorar a confiabilidade e a eficiência do sistema em 

questão. 

A análise das matrizes de confusão, conforme ilustrado na Figura 14, revela variações 

significativas no desempenho dos modelos avaliados. Observa-se que o modelo SVM com 

kernel radial exibe a maior incidência de erro do tipo I, enquanto o modelo de floresta aleatória 

apresenta a maior incidência de erro do tipo II. É importante ressaltar que, apesar da 

predominância da floresta aleatória para o erro do tipo II, a mesma demonstra a menor 

incidência para o erro do tipo I. É pertinente destacar que o equilíbrio entre os erros do tipo I e 

II constitui um "trade-off" nesse contexto. Este trade-off refere-se à busca por um ponto ótimo 

que balanceie a minimização de ambos os tipos de erro, uma vez que a redução de um tipo de 

erro pode, muitas vezes, levar ao aumento do outro, tornando imperativa a consideração 

cuidadosa desse equilíbrio. 
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Figura 14 – Matrizes de confusão (conjunto de teste) gerada para cada modelo (Fonte: Autoral, 2023). 

 

Na Figura 14, observa-se que o modelo XGBoost se sobressai como um candidato 

significativo em comparação aos demais, pois exibe uma baixa incidência de erro do tipo I, 

além de apresentar um nível aceitável de erros do tipo II. Essa constatação ressalta a atratividade 

do XGBoost como uma opção viável, pois demonstra a capacidade de minimizar os erros 

críticos do tipo I sem comprometer excessivamente a ocorrência de erros do tipo II, 

contribuindo para um desempenho mais equilibrado e confiável do sistema no desafio em 

questão. 

O exame da distribuição das pontuações de predição emerge como um indicativo da 

confiança subjacente do modelo em suas projeções. Uma considerável sobreposição entre as 

pontuações associadas aos acertos e aos erros sugere uma menor confiabilidade nas predições 

do modelo. Em contrapartida, uma notável discrepância entre essas distribuições sugere uma 

maior confiança do modelo nos casos em que acerta. 

Neste contexto, a análise representada na Figura 15 revela que o modelo SVM com 

kernel radial exibe a maior sobreposição entre as distribuições, corroborando as observações 

prévias. Os demais modelos, entretanto, demonstram uma maior separação entre as regiões 

correspondentes aos acertos e erros. Esta figura, portanto, não apenas confirma as considerações 
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anteriores, mas também oferece insights valiosos para a determinação de limiares de predição 

ótimos, os quais maximizam a precisão para uma classe específica. 

 

 

Figura 15 – Comparação das distribuições de pontuações de predição (conjunto de teste) para cada 

modelo (Fonte: Autoral, 2023). 

 

Por último, a Figura 16 representa todas as métricas avaliadas para cada modelo no 

conjunto de teste. Ela evidencia que o modelo de floresta aleatória possui a mais alta precisão, 

seguido de perto pelo modelo XGBoost. O modelo XGBoost demonstra o segundo melhor 

desempenho em termos de recall, sendo superado apenas pela regressão logística, além de exibir 

o mais elevado valor de acurácia, juntamente com índices superiores de kappa e MCC. 
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Figura 16 – Comparação das métricas avaliadas (conjunto de teste) para cada modelo (Fonte: Autoral, 

2023). 

 

5. CONCLUSÃO 

 

Uma estratégia para desenvolver um modelo para detectar comportamentos anômalos 

em um processo descentralizado de uma ETE por EC foi proposta neste trabalho. Foram 

utilizados os algoritmos floresta aleatória, regressão logística, SVM com kernel radial e 

XGBoost para encontrar um modelo adequado para classificar dados em diferentes condições 

operacionais. 

Os resultados no conjunto de teste destacaram que o modelo de floresta aleatória 

alcançou a mais alta precisão, seguido de perto pelo XGBoost. Este último, além de apresentar 

altos índices de precisão, também demonstrou desempenho notável em diversas métricas, como 

acurácia, kappa e MCC. 

O modelo XGBoost destacou-se ao minimizar o erro crítico do tipo I (falsos positivos) 

sem comprometer excessivamente o erro do tipo II (falsos negativos). Essa capacidade de 

encontrar um equilíbrio entre esses erros críticos é crucial para garantir a confiabilidade do 

sistema. 
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A floresta aleatória se destacou não apenas por alcançar uma alta precisão, mas também 

por uma importante característica: sua notável explicabilidade. Essa qualidade da floresta 

aleatória proporciona uma compreensão clara e detalhada dos fatores determinantes por trás das 

previsões. Ao oferecer uma visão transparente sobre quais variáveis e critérios são mais 

relevantes para a tomada de decisões, a floresta aleatória permite que os operadores das estações 

de tratamento de efluentes compreendam de maneira mais tangível como as falhas estão sendo 

identificadas pelo modelo. 

Consequentemente, esta pesquisa evidenciou o potencial e a eficácia da abordagem 

baseada em modelos na detecção de falhas em ETEs, possibilitando a integração com sistemas 

de apoio à decisão para manter um alto desempenho. 

Algumas sugestões são apresentadas para pesquisas futuras: 

 

- Realizar novos experimentos na otimização de hiperparâmetros utilizando novos 

métodos para aprimorar ainda mais a precisão e a eficiência dos modelos. Essa 

etapa permitirá explorar configurações mais refinadas de maneira mais eficiente 

no espaço de busca. Sugere-se a utilização de métodos como otimização 

bayesiana, otimização por enxame de partículas ou algoritmos genéticos; 

- Realizar seleção de features e reavaliar os modelos a fim de ampliar a capacidade 

dos modelos em identificar padrões relevantes nos dados. Sugere-se, por 

exemplo, a aplicação de técnicas como análise de importância de variáveis, 

métodos wrapper como recursive feature elimination ou métodos embedded 

como LASSO para selecionar as características mais relevantes. Essa abordagem 

contribuirá não apenas para simplificar e aprimorar o modelo, mas também para 

aperfeiçoar a precisão e a capacidade de generalização em diversos cenários. 

- Aprofundar a análise dos melhores pontos de corte das pontuações de previsão. 

A identificação precisa desses pontos de corte otimiza a capacidade do modelo 

em discernir com precisão entre as condições normais e anômalas, refinando a 

eficácia do sistema de detecção de falhas e a sua habilidade de tomada de 

decisão. 
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